Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
J Infect Dis ; 2023 May 17.
Article in English | MEDLINE | ID: covidwho-2326360

ABSTRACT

BACKGROUND: The association between SARS-CoV-2 genomic variation and breakthrough infection is not well-defined among persons with Delta variant SARS-CoV-2 infection. METHODS: In a retrospective cohort we assessed whether individual non-lineage defining mutations and overall genomic variation (including low frequency alleles) were associated with breakthrough infection defined as SARS-CoV-2 infection after COVID-19 primary vaccine series. We identified all non-synonymous single nucleotide polymorphisms, insertions and deletions in SARS-CoV-2 genomes with ≥5% allelic frequency and population frequency of ≥5% and ≤95%. Using Poisson regression, we assessed the association with breakthrough infection for each individual mutation and a viral genomic risk score. RESULTS: Thirty-six mutations met our inclusion criteria. Among 12,744 persons infected with Delta variant SARS-CoV-2, 5,949 (47%) were vaccinated and 6,795 (53%) were unvaccinated. Viruses with a viral genomic risk score in the highest quintile were 9% more likely to be associated with breakthrough infection than viruses in the lowest quintile, but including the risk score improved overall predictive model performance (measured by c-statistic) by only +0.0006. CONCLUSIONS: Genomic variation within SARS-CoV-2 Delta variant was weakly associated with breakthrough infection, however several potential non-lineage defining mutations were identified that might contribute to immune evasion by SARS-CoV-2.

2.
Lancet Reg Health Am ; 12: 100297, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1895304

ABSTRACT

Background: The incidence of and risk factors for severe clinical outcomes with the Omicron (B.1.1.529) SARS-CoV-2 variant have not been well-defined. Methods: We conducted a retrospective cohort study to assess risks of severe clinical outcomes within 21 days after SARS-CoV-2 diagnosis in a large, diverse, integrated health system. Findings: Among 118,078 persons with incident SARS-CoV-2 infection, 48,101 (41%) were during the Omicron period and 69,977 (59%) during the Delta (B.1.617.2) period. Cumulative incidence of any hospitalization (2.4% versus 7.8%; adjusted hazard ratio [aHR] 0.55; 95% confidence interval [CI] (0.51-0.59), with low-flow oxygen support (1.6% versus 6.4%; aHR 0.46; CI 0.43-0.50), with high-flow oxygen support (0.6% versus 2.8%; aHR 0.47; CI 0.41-0.54), with invasive mechanical ventilation (0.1% versus 0.7%; aHR 0.43; CI 0.33-0.56), and death (0.2% versus 0.7%; aHR 0.54; CI 0.42-0.70) were lower in the Omicron than the Delta period. The risk of hospitalization was higher among unvaccinated persons (aHR 8.34; CI 7.25-9.60) and those who completed a primary COVID-19 vaccination series (aHR 1.72; CI 1.49-1.97) compared with those who completed a primary vaccination series and an additional dose. The strongest risk factors for all severe clinical outcomes were older age, higher body mass index and select comorbidities. Interpretation: Persons with SARS-CoV-2 infection were significantly less likely to develop severe clinical outcomes during the Omicron period compared with the Delta period. COVID-19 primary vaccination and additional doses were associated with reduced risk of severe clinical outcomes among those with SARS-CoV-2 infection. Funding: National Cancer Institute and The Permanente Medical Group.

SELECTION OF CITATIONS
SEARCH DETAIL